

## Space Based Solar Power as a Contributor to Net Zero <br> Phase 2: Economic Feasibility - Annex B: Input Data Sources

FNC 004456-51624R Issue 1.0
Prepared for Department for Business Energy and Industrial Strategy (BEIS)

## DOCUMENT INFORMATION

Project: Space Based Solar Power as a Contributor to Net Zero
Report Title: Phase 2: Economic Feasibility - Annex B: Input Data Sources
Client: Department for Business Energy and Industrial Strategy (BEIS)
Client Ref. :
Classification: COMMERCIAL IN CONFIDENCE

Report No.: FNC 004456-51624R
Issue No.: $1.0 \quad$ Compiled By : Peter Entwistle
Date: 23-Apr-2021
Verified By : Michael Hall
Approved By: Sam White
Signed: S.White

## DISTRIBUTION

Copy Recipient
1 Joseph Clease
2 File

Organisation
Department for Business Energy and Industrial Strategy (BEIS)
Frazer-Nash Consultancy

Copy No.: $\qquad$ 1

## COPYRIGHT

The Copyright in this work is vested in Frazer-Nash Consultancy Limited. The document is issued in confidence solely for the purpose for which it is supplied. Reproduction in whole or in part or use for tendering or manufacturing purposes is prohibited except under an agreement with or with the written consent of Frazer-Nash Consultancy Limited and then only on the condition that this notice is included in any such reproduction.

Originating Office: FRAZER-NASH CONSULTANCY LIMITED
Stonebridge House, Dorking Business Park, Dorking, Surrey, RH4 1HJ
T: 01306885050 F: 01306886464 W: www.fnc.co.uk

## ANNEX B

This Annex describes the input data used in the LCOE model described in Annex A. Table B1 describes the information source and data derivation for each model parameter. Table B2 contains the data values for each model parameter. All cost data are converted into Pounds using an exchange rate from their year of origin [4] and then expressed in 2018 values using gross domestic product (GDP) deflators [3]. The deflation and conversion rates used are presented in Table B3.

| Parameter | Type | Lower Bound / Standard Deviation | Max Likelihood / Mean / Constant Value | Upper <br> Bound |
| :---: | :---: | :---: | :---: | :---: |
| OPEX Optimism Bias (\%) | Constant |  | 0 |  |
| Ground Station Optimism Bias (\%) | Constant |  | 0 |  |
| Satellite Optimism Bias (\%) | Constant |  | 0 |  |
| Spacelift Optimism Bias (\%) | Constant |  | 0 |  |
| Orbital Assembly Optimism Bias (\%) | Constant |  | 0 |  |
| At Grid Capacity (MW) | Constant |  | 2000 |  |
| Design Life (y) | Constant |  | 30 |  |
| Discount Rate (Spend) | Constant |  | 0.2 |  |
| Discount Rate (Yield) | Constant |  | 0.2 |  |
| Construction Time (y) | Constant |  | 2 |  |
| Solar Insolation (W/m2) | Constant |  | 1365 |  |
| Mirror Concentration Factor | Constant |  | 2 |  |
| RF Frequency ( Hz ) | Constant |  | 2450000000 |  |
| Maximum Beam Distance (m) | Constant |  | 38520000 |  |
| RF Intensity Limit (W/m2) | Constant |  | 250 |  |
| Load Factor | Constant |  | 1 |  |
| HCPV No | Constant |  | 40000 |  |
| WPT N0 | Constant |  | 40000 |  |
| Thruster N0 | Constant |  | 2000 |  |
| Reflector N0 | Constant |  | 2000 |  |
| CC N | Constant |  | 20 |  |
| CC No | Constant |  | 200 |  |
| Orbit keeping delta V ( $\mathrm{m} / \mathrm{s} / \mathrm{y}$ ) | Constant |  | 46 |  |
| Gravitational Constant (m/s2) | Constant |  | 9.8 |  |
| Rectenna N | Constant |  | 1000000 |  |
| Rectenna NO | Constant |  | 4000000 |  |


| Parameter | Type | Lower Bound / Standard Deviation | Max Likelihood / Mean / Constant Value | Upper <br> Bound |
| :---: | :---: | :---: | :---: | :---: |
| Learning Module Mass | Constant |  | 20 |  |
| Launch Insurance Risk | Constant |  | 0.02 |  |
| Satellite Insurance Risk, First Year | Constant |  | 0.07 |  |
| Annual Satellite Insurance Risk, After First Year | Constant |  | 0.02 |  |
| Insurance Profit Margin | Constant |  | 0.1 |  |
| Degradation Rate | Uniform | 0 |  | 0.0025 |
| O\&M Factor | Triangle | 0.008 | 0.019 | 0.047 |
| Connection \& Use Cost (£/MW/y) | Uniform | 500 |  | 1600 |
| Infrastructure Cost (£/MW) | Uniform | 3500 |  | 15000 |
| Pre-Development Cost (£/MW) | Uniform | 40000 |  | 200000 |
| RF to DC Efficiency | Uniform | 0.82 |  | 0.88 |
| DC to AC Efficiency | Uniform | 0.95 |  | 0.985 |
| AC to Grid Efficiency | Uniform | 0.999 |  | 1 |
| Transmission Efficiency | Uniform | 0.83 |  | 0.84 |
| WPT Efficiency | Triangle | 0.78 | 0.85 | 0.87 |
| Housekeeping Efficiency | Uniform | 0.95 |  | 0.97 |
| HCPV Efficiency | Uniform | 0.33 |  | 0.42 |
| Reflector Efficiency | Uniform | 0.94 |  | 0.945 |
| HCPV Mass Per Area (kg/m^2) | Triangle | 0.27 | 0.34 | 0.4 |
| Learning Exponent | Triangle | -0.73 | -0.58 | -0.24 |
| HCPV Cost per Unit Area (£/m2) | Triangle | 90 | 100 | 230 |
| Reflector Mass per Unit Area (kg/m^2) | Triangle | 0.0282 | 0.0367 | 0.0373 |
| Reflector Cost per Unit Mass (£/kg) | Uniform | 228 |  | 245 |
| WPT Mass per Unit Area (kg/m^2) | Uniform | 0.12 |  | 0.15 |
| WPT Cost per Unit Mass (£/kg) | Uniform | 1000 |  | 2600 |
| Number of Thruster Units | Normal | 60 | 200 |  |
| Thruster Cost per Unit (£) | Uniform | 4336151 |  | 6267948 |
| Thruster Mass per Unit (kg) | Uniform | 8.5 |  | 13 |
| Communications \& Control Systems Cost per Unit Mass ( $£ / \mathrm{kg}$ ) | Triangle | 80000 | 86000 | 111000 |
| Communications \& Control Systems Mass (kg) | Uniform | 4000 |  | 15000 |
| Structure Cost per Unit Mass (£/kg) | Normal | 30 | 148 |  |
| Structural Mass Ratio | Normal | 0.02 | 0.1 |  |


| Parameter | Type | Lower Bound / Standard Deviation | Max <br> Likelihood / Mean / Constant Value | Upper <br> Bound |
| :---: | :---: | :---: | :---: | :---: |
| Thruster Specific Impulse (s) | Uniform | 2000 |  | 2500 |
| Land Cost per Unit Area ( $£ / \mathrm{m}^{\wedge} 2$ ) | Triangle | 1.7 | 2.6 | 2.7 |
| Rectenna Cost per Unit Area ( $£ / \mathrm{m}^{\wedge} 2$ ) | Uniform | 5 |  | 8 |
| Power Control \& Mission Control Facility Cost (£) | Normal | 22905617 | 114528083 |  |
| Electrical Balance of Plant Cost (£/MW) | Uniform | 50000 |  | 180000 |
| Spacelift Cost per Unit Mass (£/kg) | Loguniform | 358 |  | 2410 |
| Orbital Module Mass (kg) | Uniform | 20 |  | 100 |
| Assembly Robot Cost per Unit Mass (£/kg) | Uniform | 60000 |  | 500000 |
| Mass per Assembly Robot (kg) | Triangle | 10 | 50 | 100 |
| Days of Assembly per Module (d) | Uniform | 0.05 |  | 0.2 |
| Decommissioning Delta $V(\mathrm{~m} / \mathrm{s}$ ) | Uniform | 11 |  | 600 |

Table B1: Cost Model Input Data Values

| Parameter | Information Source and Data Derivation |
| :--- | :--- |
| Optimism Bias (\%) | The application of optimism bias is discussed in section 2 of the main <br> report. |
| At Grid Capacity (MW) | SBSP systems are possible at a range of scales, but to allow <br> meaningful comparisons with other technologies the scale of the <br> assessed system is fixed. The capacity at grid is a metric which is <br> universal across electricity generation technologies, hence is used to <br> define the system scale. 2GW was chosen as comparable scale to <br> other baseload generators. |
| Design Life (y) | Operation life is limited by the degradation of satellite modules and <br> the fuel needed to keep the satellite in orbit. Currently <br> communications satellites in GEO have a life of about 15 years. <br> Nonetheless, there is a drive to increase the life of satellites; to make <br> better use of the materials and reduce the amount of space debris. It <br> is judged that by 2040 there will be a business case for a useful life of <br> 30 years. <br> The model was used to investigate the impact of shorter and longer <br> design life. |
| Discount Rate (Spend \& Yield) | The discount rate used to account for the costs of capital and risks in <br> the project is based on the projected hurdle rate required by <br> institutional investors. This assumption was agreed after extensive <br> discussion as suitable to provide balanced comparisons with other <br> technologies. |
| Construction Time (y) | The construction time was estimated based on a reasonable estimate <br> of spacefreight launch tempo. |
| Solar Insolation (W/m2) | The average standard solar radiation intensity at 1 astronomical unit <br> from the sun (the distance from the earth to the sun). |


| Parameter | Information Source and Data Derivation |
| :---: | :---: |
| Mirror Concentration Factor | The degree of solar concentration provided by the mirrors on the satellite; a function of the architecture of the particular design concept being modelled. |
| RF Frequency (Hz) | A design parameter in the architecture of the particular design concept being modelled. |
| Maximum Beam Distance (m) | The distance from a satellite in geostationary orbit to a ground station located in the UK. |
| RF Intensity Limit (W/m2) | A design parameter in the architecture of the particular design concept being modelled. International agreement and regulation will be needed to establish safe RF Intensity Limits. In the meantime, SBSP system designers have been using $250 \mathrm{~W} / \mathrm{m}^{2}$, equivalent to a quarter of the noon day sun at the equator [1]. |
| Load Factor | Load factor is a design assumption. This is slightly optimistic, as there will be some downtime for shadowing by the Earth and maintenance, but these are likely to be relatively small |
| HCPV N0 | Modules have been classified as either general or specific when determining $N_{0}$ values. General modules are expected to have been produced outside of SBSP projects, while specific modules are expected to be unique to SBSP (Reflector, HCPV \& WPT are specific, rest are general) For specific modules, $N_{0}=4 N$ to account for the initial SBSP systems in the fleet, while for general modules, $N_{0}=10 \mathrm{~N}$. The values of $N$ have been rounded from estimates for SPS-ALPHA module mass [2], see Learning Module Mass |
| WPT NO |  |
| Thruster N0 |  |
| Reflector N0 |  |
| CC N |  |
| CC N0 |  |
| Orbit keeping delta V ( $\mathrm{m} / \mathrm{s} / \mathrm{y}$ ) | The change in velocity required to keep the satellite on station and maintain geostationary orbit [2]. |
| Gravitational Constant (m/s2) | The standard acceleration due to gravity. |
| Rectenna N | There probably isn't much learning left to be done on the elements (diodes and steelwork) of the rectenna, but there may be some learning to be done on the way these are assembled together into the very large structure. Therefore the values for the rectenna are based on a rectenna module area of the order a hectare. |
| Rectenna N0 |  |
| Learning Module Mass | The learning module mass has been rounded from estimates for SPS-ALPHA module counts [2], based on John Mankins investigation of the optimum module size for these hyper-modular satellites [1]. This analysis has been used to establish the appropriate size of a module used for the learning factor calculations. |
| Launch Insurance Risk | The insurance costs for Falcon 9 rockets are currently $4 \%$ of total cost per year [3]. By the time SBSP is deployed reusable launch will be a commodity and hence launch insurance will approach costs comparable with insurance for air/sea freight. The rate for ocean freight insurance is between $0.5 \%$ and $1 \%$ of the total value for risky goods [4]. Therefore, use twice the upper bound at $2 \%$. |
| Satellite Insurance Risk, First Year | Satellite insurance is derived from published risk levels in the first year ( $7 \%$ ) and subsequent years ( $2 \%$ ) of satellite operation [8] and an assumed $10 \%$ margin for the insurer [ 9$]$. |
| Annual Satellite Insurance Risk, After First Year |  |


| Parameter | Information Source and Data Derivation |
| :---: | :---: |
| Degradation Rate | Degradation factor accounts for the failure and degradation of proportion modules during the life of the satellite. The distribution assumes a range of average degradation rates from 0 to $0.25 \%$ per year; |
| O\&M Factor | The annual operational cost of the system is the sum of two elements, ground operation and satellite operation. The costs are calculated by applying the O\&M Factor to the relevant construction cost. The O\&M Factor is derived from data published in the Electricity Generation Costs report [2] using fixed operations and maintenance (O\&M) costs divided by 'medium' construction cost [2] for the following technologies: <br> - Biomass carbon capture and storage (CCS) (n of a kind) (Upper bound); <br> - Wave (lower bound); <br> - Geothermal combined heat and power (CHP); <br> - Hydro Large Storage; <br> - Hydro 516MW; <br> - Onshore wind; <br> - Offshore wind, and <br> - Large-scale solar (maximum likelihood). <br> As the satellite operations predominantly consist of control and monitoring rather than maintenance, it is judged that the lower bound of this factor applies to satellite cost. |
| Connection \& Use Cost (£/MW/y) | Connection and Use based on data published in the Electricity Generation Costs report for large scale solar [2] for the upper bound and nuclear [7] for the lower bound. These two technologies were chosen as bounds based on the determination that SBSP shares a lack of rotating mass with large scale solar and a unity load factor with nuclear. |
| Infrastructure Cost (£/MW) | These figures are use the range of infrastructure costs of a 3.3GW nuclear plant nuclear from the Electricity Generation Costs report [7], as the on site electrical operations for an SBSP ground station are likely to be comparable. |
| Pre-Development Cost (£/MW) | Pre-Development Costs are based data published in the Electricity Generation Costs report [2], using the upper and lower bounds for onshore wind [2], as this technology and SBSP sharing the need to have a large footprint. |
| RF to DC Efficiency | The conversion efficiency from RF to direct current (DC) within the rectenna, based on work carried out by Shinohara [9] and Brown [10] |
| DC to AC Efficiency | The conversion efficiency from DC to alternating current (AC), distributed according to [12] [10] [11] |
| AC to Grid Efficiency | The conversion efficiency from AC to the grid, distributed according to [11]. |
| Transmission Efficiency | Transmission Efficiency accounts for the possibility that up to $2 \%$ of energy is absorbed by the atmosphere [11] and that the rectenna is sized to capture energy up to the first minimum of the Airy Disk, ie $84 \%$ of the total energy in the beam. |
| WPT Efficiency | Efficiency of the wireless power transmitter (WPT), using data from the IEEE International Conference on Wireless for Space and Extreme [10] and a maximum likelihood of the combination of the relevant efficiencies from proof of concept tests [13]. |
| Housekeeping Efficiency | Housekeeping efficiency is an estimate of the power necessary to operate the satellite operation. |


| Parameter | Information Source and Data Derivation |
| :--- | :--- |
| HCPV Efficiency | The HCPV module efficiency is based on values from AzurSpace [14] <br> and a survey by the National Renewable Energy Laboratory [15]. The <br> values used capture the efficiency of the PV and losses through the <br> primary and secondary optical elements. |
| Reflector Efficiency | The Reflector Efficiency is sourced from coating reflectance data for <br> a suitable product produced by Thor Labs [16]. |
| HCPV Mass Per Area (kg/m^2) | Mass per unit area data is based on experiments carried out by <br> O'Neil et al [21], Although the lower value excludes some, relatively <br> lightweight, elements, it is judged to be the most likely value as the <br> higher value is from an early stage of development. |
| Learning Exponent | Learning Exponent is a coefficient expressing the effect of mass <br> production on reducing costs. Building on the original work by <br> Thomas Wright in 1936 (based on Boeing's production data) John <br> Mankins has estimated that the cost/kg of SPS satelites reduce to <br> 67\% of the original cost for each doubling of production volume [19] <br> [30], implying that: <br> $2^{f} f_{L c}=0.67$ <br> $\quad:$ |
| HCPV $=-0.58$ |  |


| Parameter | Information Source and Data Derivation |
| :---: | :---: |
| Reflector Mass per Unit Area ( $\mathrm{kg} / \mathrm{m}^{\wedge} 2$ ) | The reflector is expected to be a thin film supported and tensioned by a minimal frame; similar in form to a solar sail. To interpret figures for reflector mass, the planned mass breakdowns of three unmanned solar sail projects Geosail, Solo-Sail and Polar Observer, have been interpreted [17]. These breakdowns imply that: a fixed reflector of equivalent area is $23.8-46.5 \%$ of the mass of a solar satellite; a static reflector is $59-78.1 \%$ of the mass of a deployable reflector and structure is $34.5-46.6 \%$ of static reflector mass. The solar sail IKAROS [18], which was launched in 2010, has a mass of 3000 kg and an area of $184 \mathrm{~m}^{2}$. Applying the breakdowns above leads to a mass per unit area of $0.39-0.76 \mathrm{~kg} / \mathrm{m}^{2}$. The top value is an outlier from the remainder of the data, and hence is discarded, and the bottom is taken as the upper bound value. <br> The James Webb Space Telescope, planned for launch in 2021, includes a deployable sunshield which is similar in form to solar sails and the planned reflector. The reference design mass is 200 kg for five films covering $225 \mathrm{~m}^{2}$ area [18]. Accounting for the deployment mechanism using the proportions above and dividing by five to account for the multiple films gives $0.105-0.139 \mathrm{~kg} / \mathrm{m}^{2}$. The average of these figures is taken as the most likely value. <br> Alternatively, a mass can be derived by considering the planned film mass. Subject matter expert judgement suggests a film of $12.5 \mu \mathrm{~m} \mathrm{HN}$ polyimide and $0.1 \mu \mathrm{~m}$ silver is appropriate, with a mass per unit area of $0.0188 \mathrm{~kg} / \mathrm{m}^{2}$. Applying the ratios above gives a mass of $0.03-$ $0.04 \mathrm{~kg} / \mathrm{m}^{2}$. The bottom of this range is taken as the lower bound value. |
| Reflector Cost per Unit Mass (£/kg) | Reflector cost metrics derived from cost values for reflector pods and structural elements [19] of $\$ 400 / \mathrm{kg}$ and $\$ 200 / \mathrm{kg}$, assuming 34.5$46.6 \%$ of the mass is structure as derived above. |
| WPT Mass per Unit Area (kg/m^2) | The 2000MW estimate [19] used to define the cost per unit mass are also used to define the mass per unit area. It is assumed based on the sandwich panel design of this concept that the WPT area is equal to the photovoltaic area. For baseline cases with minimal technology advances, this estimate quotes $70 \%$ WPT efficiency and $25-48 \%$ solar power generation efficiency. Therefore for $2,000 \mathrm{MW}$ emission the photovoltaic input power is $5,950-11,430 \mathrm{MW}$, which leads to an area of $4,360,000-8,370,000 \mathrm{~m}^{2}$ assuming $1.365 \times 10^{-3} \mathrm{MW} / \mathrm{m}^{2}$ input power density. Dividing the stated WPT mass of $12,125,000 \mathrm{~kg}$ [19] by these areas leads to the mass per unit area upper bound and maximum likelihood. The approach to the WPT is uncertain and other designs may result in a lower mass. SME judgement is that the mass per unit area of alternative designs could be a factor of 10 smaller than the maximum likelihood value, which forms the lower bound. |
| WPT Cost per Unit Mass ( $£ / \mathrm{kg}$ ) | The cost per unit mass of the WPT is estimated from the cost of the materials multiplied by a manufacturing factor. These estimates are sense checked against published costs for SPS-ALPHA [19] [30], taking into account the learning factors that have been applied to these costs. |
| Number of Thruster Units | The number of thrusters is based on the assessment carried out for SPS-Alpha [19] giving a mean of 200 units, and applying a $20 \%$ uncertainty. |
| Thruster Cost per Unit (£) | The purchase cost of a thruster is based on published costs of $\$ 67,000,000$ [26] and $£ 23,000,000$ [27] scaled to account for the associated research and development. |


| Parameter | Information Source and Data Derivation |
| :---: | :---: |
| Thruster Mass per Unit (kg) | The mass of a thruster is taken from current production models, T6 and T 7 manufactured by Qinetiq [25]. |
| Communications and Control Systems Cost per Unit Mass (£/kg) | The costs for the 'wifi router hub" and 'external comm' described above are $£ 12,450 / \mathrm{kg}$ and $£ 111,000 / \mathrm{kg}$ [ 30 ]. When averaged by mass, this gives a total cost per unit mass of $£ 86,000 / \mathrm{kg}$, which is taken as the maximum likelihood. A weighed average of control components (communications antenna, communication electronics, tracking, telemetry and command, attitude determination, attitude and reaction control) of $£ 80,000 / \mathrm{kg}$ is taken as a lower bound [31]. |
| Communications \& Control Systems Mass (kg) | For 100MW satellites, masses of 'wifi router hub', 'external comm' and 'kernel core' are $50 \mathrm{~kg}, 150 \mathrm{~kg}$ and $15,000 \mathrm{~kg}$ respectively [30]. The makeup of the kernel core is uncertain, hence a $4,000 \mathrm{~kg}$ lower bound is derived with the kernel core excluded. |
| Structure Cost per Unit Mass (£/kg) | The cost per unit mass of the structure is based on the analysis of the cost of space hardware carried out for SPS-Alpha [19] and a applying a 20\% uncertainty |
| Structural Mass Ratio | As the designs of the SPS are still at the concept stage an estimate has had to be made of the structural mass. |
| Thruster Specific Impulse (s) | The specific impulse for electric thrusters, distributed according to [29] |
| Land Cost per Unit Area ( $£ / \mathrm{m}^{\wedge}$ ) | The cost of land is based on agricultural prices per hectare throughout the UK [35]. |
| Rectenna Cost per Unit Area ( $£ / m^{\wedge} 2$ ) | Reference [30] gives justified data for rectenna costs, based on estimates of the steelwork for this size of structure and diode costs. Rectenna may be located offshore, the ratio between construction cost for onshore \& offshore wind from [2] has been used to scale costs and give an upper bound. |
| Power Control + Mission Control Facility Cost (£) | The combination of a power control system with space mission control has few parallels and hence is challenging to predict. Fusion plants are considered a reasonable point of comparison due to the combination of controlling complex technology and power generation. The mean is derived from a fusion estimate [32] adjusted for the year of estimate and the standard deviation is a nominal $20 \%$. |
| Electrical Balance of Plant Cost (£/MW) | The cost of the balance of plant is derived from the range of estimates for terrestrial solar PV based on Reference [12]. The upper bound is based on an EU assessment for solar PV [33]. The lower bound is based on work published by the US National Renewable Energy Laboratory [34]. |


| Parameter | Information Source and Data Derivation |
| :---: | :---: |
| Spacelift Cost per Unit Mass (£/kg) | We consider two systems to explore the likely range of cost figures for the future space launch market: A fully reusable single stage to orbit Reaction Engines SABRE powered horizontal take-off and landing spaceplane. The SpaceX Starship which features fully reusable first and second stages, and with the capability of refuelling in orbit. Both systems are designed to require only modest maintenance / refurbishment between flights, rapid turnaround time, high flight rate and high utilisation. The life of the Starship is assumed to be up to 100 flights, and that of the spaceplane up to 200 flights. <br> The SPS payloads would be launched to LEO, where a transportation infrastructure of chemical tugs would raise the payload to a medium earth orbit (MEO), just above the inner Van Allen belt, at an altitude of around $5,900 \mathrm{~km}$. Here the SPS would be assembled. Then the fully assembled SPS, using on-board electric propulsion, selfpowered by the SPS solar arrays, would raise it into its final operational orbit. The mass ratio of propellant to payload for the chemical tugs is about 1:1, allowing for an out and return journey between LEO and MEO. Thus for each launch of an SPS payload, an additional launch would be required to ferry chemical tug propellant from Earth to LEO. <br> Elon Musk has quoted very ambitious figures for Starship launch costs, which assumes high flight rates and a life of up to 100 flights [39] [40]. Using the chemical tug refuelling strategy, an estimated 61.3 tonnes can be delivered to GEO with 2 launches. Assuming a cost per launch comparable with the current cost for SpaceX Falcon Heavy, $\$ 100 \mathrm{M}$, the cost is $\$ 3,260 / \mathrm{kg}$. <br> Reaction Engines has developed estimates for the production and operation of a spaceplane. Assuming a flight rate per vehicle of 4 per week, an operating cost of $£ 7.5 \mathrm{M}$ per flight with a payload of 15 tonnes to LEO, the total cost to GEO, including the cost of chemical tug refuelling flights, is $£ 1,340 / \mathrm{kg}$. <br> As Spacefreight becomes commoditised, as airfreight is today, the costs reduce. Reaction Engines predict [37] that as the flight rate per year increases from 1,000 to 10,000 per year the cost falls from $\$ 400 / \mathrm{kg}$ to $\$ 100 / \mathrm{kg}$ |
| Orbital Module Mass (kg) | John Mankins has investigated the optimum module size for these hyper-modular satellites [1], this analysis has been used to establish the range of sizes for a module. |
| Assembly Robot Cost per Unit Mass (£/kg) | The costs of the robots is based on the generic cost of space hardware [1]. |
| Mass per Assembly Robot (kg) | The assembly robots will be small articulated arms that "walk" across the structure of the satellite. The mass of the robots will be of the same order of magnitude to the modules they manipulate, but on the heavier side. The mass distribution is based on the work done for SPS-Alpha [19]. |
| Days of Assembly per Module (d) | The range of assembly time for each module is based on judgement, recognising that all the modules will have the same interface and will go together as simply as Lego bricks. |
| Decommissioning Delta V ( $\mathrm{m} / \mathrm{s}$ ) | The velocity needed to move the satellite from a geostationary orbit into a stable graveyard orbit, the range of values is taken from conference papers discussion the end of life disposal of satellites [37], [38] and a relevant patent [39]. |

Table B1: Cost Model Input Data Sources and Derivation

| Year | $\begin{gathered} \text { GDP } \\ (2021=100) \end{gathered}$ | Currency Conversion (GBP/USD) |
| :---: | :---: | :---: |
| 1990 | 51.57 | 1.7841 |
| 1991 | 54.99 | 1.7674 |
| 1992 | 56.72 | 1.7663 |
| 1993 | 58.26 | 1.5016 |
| 1994 | 59.04 | 1.5319 |
| 1995 | 60.48 | 1.5785 |
| 1996 | 62.97 | 1.5607 |
| 1997 | 63.65 | 1.6376 |
| 1998 | 64.25 | 1.6573 |
| 1999 | 64.84 | 1.6177 |
| 2000 | 66.04 | 1.5149 |
| 2001 | 66.70 | 1.4401 |
| 2002 | 68.11 | 1.4996 |
| 2003 | 69.64 | 1.6355 |
| 2004 | 71.42 | 1.8329 |
| 2005 | 73.21 | 1.8203 |
| 2006 | 75.24 | 1.8429 |
| 2007 | 77.18 | 2.0016 |
| 2008 | 79.41 | 1.8554 |
| 2009 | 80.72 | 1.5654 |
| 2010 | 81.95 | 1.5459 |
| 2011 | 83.63 | 1.6041 |
| 2012 | 85.01 | 1.5849 |
| 2013 | 86.62 | 1.5648 |
| 2014 | 88.21 | 1.6477 |
| 2015 | 88.72 | 1.5285 |
| 2016 | 90.62 | 1.3557 |
| 2017 | 92.33 | 1.2886 |
| 2018 | 94.30 | 1.3348 |
| 2019 | 96.06 | 1.2769 |
| 2020 | 98.03 | 1.2841 |
| 2021 | 100.00 | 1.3642 |

Table B3: GDP Deflators and Conversion Rates

## BIBLIOGRAPHY

[1] OFX, "Yearly Average Rates," 2020. [Online]. Available: https://www.ofx.com/en-gb/forex-news/historical-exchange-rates/yearly-average-rates/. [Accessed 0202 2021].
[2] HM Treasury, "GDP deflators at market prices, and money GDP March 2020 (Budget)," GOV.UK, 2020.
[3] Mankins, "The Case for Solar Power," 2014.
[4] J. Lewer, D. Mann, J. Palor and R. Webster, "Final Report: Evaluation of Solar Power Satellite Systems to Support Renewable Energy Generation within Australia," RMIT School of Engineering, Held in Frazer-Nash Technical File 004456, 2020.
[5] S. Gulgonul and N. Sozbir, "Propellant Budget Calculation of Geostationary Satellites," in 6th International Symposium on Innovative Technologies in Engineering and Science, lanyaAntalya, 2018.
[6] M. Sheetz, "CNBC," 2020. [Online]. Available: https://www.cnbc.com/2020/04/16/elon-musk-spacex-falcon-9-rocket-over-a-million-dollars-less-toinsure.htmI\#:~:text=SpaceX\ advertises\ Falcon\ 9\ rocket,\%\ currently\%2C \%20the\%20underwriter\%20said.. [Accessed 0102 2021].
[7] "The Cost of Ocean Freight Insurance," Sourcinghub, [Online]. Available: https://www.sourcinghub.io/the-cost-of-ocean-freight-insurance/.
[8] S. Shapiro, "Operators go uninsured due to cost and in-orbit coverage limitations," 2007. [Online]. Available: https://www.businessinsurance.com/article/20070422/ISSUE01/100021660/operators-go-uninsured-due-to-cost-and-in-orbit-coverage-limitations. [Accessed 0102 2021].
[9] A. J. Gould and O. M. Linden, "Estimating Satellite Insurance Liabilities," Casualty Actuarial Society, 2000.
[10] Department for Business, Energy and Industrial Strategy, "Electricity Generation Costs," GOV.UK, 2020.
[11] Department for Business, Energy and Industrial Strategy, "Electricity Generation Costs," GOV.UK, 2016.
[12] N. Shinohara, "History and Innovation of Wireless Power Transfer via Microwaves," IEE Journal of Microwaves, vol. 1, no. 1, 2021.
[13] W. C. Brown, "The History of the Development of the Rectenna," in SPS Microwave Systems Workshop, Houston, Texas, 1980.
[14] International Renewable Energy Agency, "The Power to Change: Solar and Wind Cost Reduction Potential to 2025," 2016.
[15] T. Vinogradova, "Space Solar Power Workshop," in IEEE International Conference on Wireless for Space and Extreme Environments, 2017.
[16] R. G. Madonna, "Space Solar Power - What is it? Where Has it Been And What Could be Its Future?," Held in Frazer-Nash Technical File 004456, 2018.
[17] A. Douyère, G. Pignolet, E. Rochefeuille, F. Alicalapa, L. S. L. Jean Daniel and J.-P. Chabriat, ""Grand Bassin" Case Study: An Original Proof-Of-Concept Prototype for Wireless Power Transportation," in WPTC, Montreal, 2018.
[18] AzurSpace, "Concentrator Triple Junction Solar Cell," Held in Frazer-Nash Consultancy Technical File 004456, 2015.
[19] NREL, "Best Research-Cell Efficiency Chart," 0401 2021. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html. [Accessed 0202 2021].
[20] THORLABS, "Product Raw Data: Metallic Coating Reflectance, $45^{\circ}$ AOI," Held in Frazer-Nash Consultancy Technical File 004456, 2021.
[21] M. O'Neill, A. J. McDanal, M. Piszczor, M. Myers, P. Sharps, C. McPheeters and J. Steinfildt, "Line-Focus and Point-Focus Space Voltaic Concetrators Using Robust Fresnel Lenses, 4 junction Cells and Graphene Radiators," in 44th IEEE Photovoltaic Specilists Conference (PVSC), Washington DC, 2017.
[22] J. Mankins, "SPS-ALPHA: The First Practical Solar Power Satellite via Arbitrarily Large Phased Array," NASA, 2012.
[23] Space Related Ideas (Damir), "Why Is Starlink Terminal So Cheap," 2021. [Online]. Available: https://lilibots.blogspot.com/2021/01/why-is-starlink-terminal-so-cheap.html. [Accessed 0102 2021].
[24] E. R. Messmer, "CPV Market Evolution and the Potential in Cost Reduction of CPV Modules," in 9th Conference on Concentrator Photovoltaic Systems, Japan, 2013.
[25] P. Benitez, J. C. Miñano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves and M. Hernández, "High performance Fresnel-based photovoltaic concetrator," Optics Express, vol. 18, no. S1, pp. A25-A40, 2010.
[26] K. A. W. Horowitz, M. Woodhouse, H. Lee and G. P. Smestad, "A Bottom-up Cost Analysis of a High Concentration PV Module," in AIP Conference Proceedings 1679, 2015.
[27] C. R. McInnes, "Solar Sailing - Mission Opportunities and Innovative Technology Demonstration," Journal of the British Interplanetary Society, vol. 53, pp. 48-61, 2000.
[28] O. Mori, H. Sawada, R. Funase, M. Morimoto, T. Endo, T. Yamamoto, Y. Tsuda, Y. Kawakatsu and J. Kawaguchi, "First Solar Power Sail Demonstration by IKAROS," in 27th International Symposium on Space Technology and Science, 2009.
[29] J. Johnston, "Thermal-Structural Analysis of Sunshield Membranes," in AIAA Gossamer Spacecraft Forum, 2003.
[30] M. Wall, "Next-Gen Propulsion System Gets $\$ 67$ Million from NASA," 2016. [Online]. Available: https://www.space.com/32692-solar-electric-propulsion-asteroid-mars.html. [Accessed 0102 2021].
[31] The Engineer, "Qinetiq to Supply Propulsion System," 2 September 2009. [Online]. Available: https://www.theengineer.co.uk/qinetiq-to-supply-propulsion-system/. [Accessed 0102 2021].
[32] QINETIQ, "Solar Electric Propulsion," 2021. [Online]. Available: https://www.qinetiq.com/en/what-we-do/services-and-products/solar-electric-propulsion. [Accessed 0102 2021].
[33] D. W. Miller, "Space System Cost Modelling, Aerospace Corporation Small Satellite Cost Model (SSCM)," Held in Frazer-Nash Consultancy Technical File 004456, 2003.
[34] K. J. Hack, "Solar Electric Propulsion for Mars Exploration," 1998. [Online]. Available: https://ntrs.nasa.gov/citations/20050181421. [Accessed 2901 2021].
[35] Ministry for Housing, Communities and Local Government, "Land Value Estimates for Policy Appraisal 2019," 2019.
[36] United States Department of Energy, "Department of Energy Assessment of the ITER Project Cost Estimate," 2002.
[37] A. Jager-Waldau, "PV Status Report 2019," Joint Research Centre, European Commission, 2019.
[38] R. Fu, D. Feldman and R. Margolis, "U.S. Solar Photovoltaic System Cost," National Renewable Energy Laboratory Report NREL/TP-6A20-72399, 2018.
[39] SpaceX, "Capabilities and Services," 2021. [Online]. Available: https://www.spacex.com/media/Capabilities\&Services.pdf. [Accessed 0102 2021].
[40] SpaceX, "Starship User's Guide," 2020. [Online]. Available: spacex.com/media/starship_users_guide_v1.pdf. [Accessed 0102 2021].
[41] Reaction Engines Ltd, "Solar Power Satellites and Spaceplanes," 2008.
[42] I. Gkilias and C. Colombo, "End of Life Disposal of Geosynchronous Sattelites," in 68th International Astronautical Congress, Adelaide, 2017.
[43] R. Domınguez-Gonzalez, J. Radtke, N. Sanchez-Ortiz and K. Merz, "Long-Term Implications for GNSS Disosal Strategies for the Space Debris Environment," in Procedings of the 7th European Conference on Space Debris, Darmstadt, 2017.
[44] G. Saccoccia, F. Paganucci and F. Scortecci, "Method for Re-Orbiting a Dual Mode Propulsion Geostationary Spacecraft". United States Patent 5,651,515, 29 July 1997.

Frazer-Nash Consultancy Ltd
Stonebridge House
Dorking Business Park
Dorking
Surrey
RH4 1HJ

T 01306885050
F 01306886464
www.fnc.co.uk
Offices at:
Bristol, Burton-on-Trent, Dorchester, Dorking,Glasgow, Plymouth, Warrington and Adelaide

