

Space Based Solar Power (SBSP) Innovation Programme

Stakeholder Engagement

Wednesday 30 March 2022

OFFICIAL

Welcome & Content

Description	Organisation		
Welcome	Frazer-Nash		
Programme Overview	BEIS		
Overview of SBSP	Frazer-Nash		
Technical Questions and Answer Session	Frazer-Nash		
Wireless Power Transmission	All		
Photovoltaics	All		
Systems Engineering	All		
Close			

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

Space Based Solar Power

Programme Overview

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

OFFICIAL

Department for Business, Energy & Industrial Strategy

Background

Net Zero Challenge

- High renewables
- Reliable and balanced energy system

SBSP Feasibility Study

- BEIS/UKSA
- Technical and economic feasibility
- Literature review
- Industry workshops
- International expert consultation

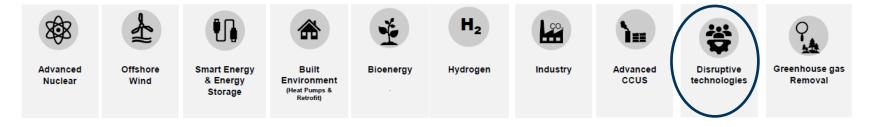
Expression of Interest

• Following the publication of study -October 2021

Stakeholder Workshop

- Competition preliminary info
- Views on innovation needs
- Opportunity to network

Analysis report: https://www.gov.uk/government/publications/space-based-solar-power-de-risking-the-pathway-to-net-zero



Net Zero Innovation Portfolio (NZIP)

PM's 10 Point Plan for a Green Industrial Revolution

- Point 10: Green Finance and Innovation unleashing innovation and developing new sources of finance
- £1 billion Net Zero Innovation Portfolio to accelerate the commercialisation of innovative lowcarbon technologies, systems and processes in the power, buildings and industrial sectors

NZIP Priority Areas

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

Department for Business, Energy & Industrial Strateg

Programme Objectives

Increase in TRL level

£3m research & development grant funding for key component technologies for space based solar power with spin-off applications in terrestrial settings

UK leadership in clear energy sectors

UK leadership in international SBSP community

Dissemination to international stakeholders, industry and academia

Stimulate further innovation that that may benefit other clean energy sectors

> Department for Business, Energy & Industrial Strategy

Technology Scope

Lot 1: Wireless Power Transmission - £1.25m

Development of high power wireless electromagnetic power transmission system with high efficiency and directionality over a long range beyond the state-of-the-art

Lot 2: High Concentration Solar Photovoltaics - £1.25m

Development of innovative solar cells including new system design and novel materials research to increase its efficiency and reduce cost

Lot 3: Systems Engineering - £500k

Systems studies, management, design, and integration of wireless power transmission and high concentration solar PV

Eligibility Criteria

Innovation and technological readiness TRL 1 - 6

Project status Unable to fund retrospective work

Subsidy Control Match funding required Cumulative public subsidy applies

FRAZER-NASH

Project location

Department for

Over 50% of project costs must be incurred in the UK

Project duration Must be completed before March 2025

Maximum allowable funding

£1m per project and £2.5m per single applicant

Delivering multiple projects

Lead applicant can submit more than one bid

One application per lead in each Lot

General Conditions

Companies of any size are eligible to seek funding Standard BEIS T&Cs

Assessment Criteria

Criterion	Weighting	
Technical concept and level of innovation	20%	
Credibility of technical approach; relevance to the development of SBSP; relevance to Net Zero	20%	
Dissemination strategy	10%	
Project plans, risks and management	15%	
Project costs and value for money	20%	
Project skills and experience	15%	

Minimum score of 60% to be eligible for funding

Programme Timeline

Space Based Solar Power as a Contributor to Net Zero A Techno-economic study into Space Based Solar Power

Overview of SBSP

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

OFFICIAL

Project Aim:

To develop a credible evidence base to justify further work into developing SBSP as a contributor to the UK's Net Zero target.

Two phase project: Phase 1 – Review of the engineering feasibility of SBSP. Phase 2 - Assessment of the cost and wider economic benefits of SBSP specific to the UK

Considered SBSP in the context of UK sovereign, base load, GW scale energy generation.

Political, legal, regulatory and environmental impacts were not explored.

Results delivered April 2021

Phase 1 – Engineering feasibility of SBSP

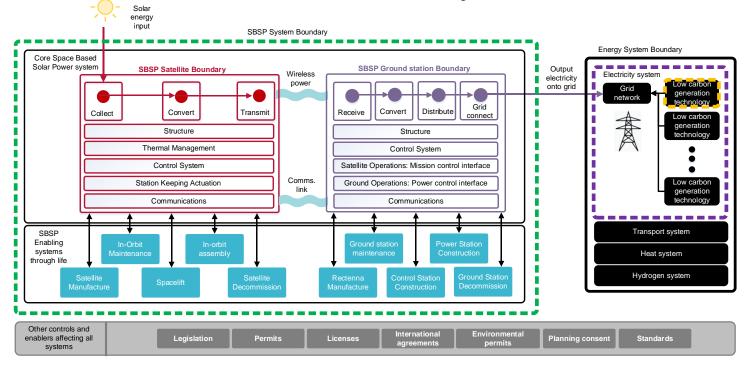
- Investigate available SBSP designs and costs
- Explore the engineering barriers in delivering SBSP
- Assess the contribution SBSP could make to UK Net-Zero target
- Provide a technology roadmap for the Development of SBSP

Phase 2 – Cost and economic benefits to the UK

- Develop a cost model
- Assess the cost benefit of SBSP
- Identify the potential for spill-over benefits from the technology development
- Assess the ability of the UK to deliver the solution
- Assess the level of private and public funding needed

Reviewed 3 leading base load Solar Power Satellite concepts

SPS Alpha John Mankins, USA Assessment based on: Multi-Rotating Joints SPS Xinbin Hou, CAST, China


CASSIOPeiA Ian Cash, IECL, UK

Five satellites, each satellite located in Geosynchronous Orbit providing 2 GW to the grid, Generating 10 GW total

System Breakdown - to describe the system

Phase 1 Engineering feasibility of SBSP - Conclusions

The study reviewed:

- The engineering barriers to be overcome
- The technological development required, and
- The roadmaps that are required in order to deliver sufficient SBSP capability by 2050.

The Study Concluded:

- The engineering development required to realise a 10GW SBSP capability in 2050 is feasible
- SBSP could contribute to the UK energy system and support Net Zero.

Phase 1 Engineering feasibility of SBSP - Conclusions

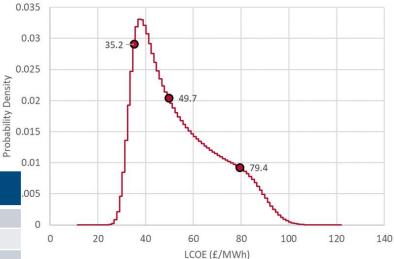
The key engineering barriers to achieving SBSP in order to support Net Zero in 2050 are:

- Technology maturation needed across all subsystems, in particular:
 - Decommissioning the satellite
 - Wireless Power Transmission
 - Reduce mass and increase efficiency of key systems eg PV
 - Satellite structural and control subsystems
 - In-orbit assembly and maintenance robotics
- Sufficient production facilities to manufacture the satellites.
- Sufficient launch capability to deliver the satellites to their operational orbits.

Phase 1 Engineering feasibility of SBSP - Conclusions

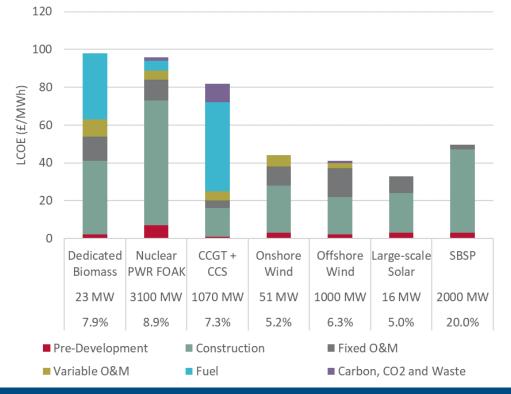
Additionally, a number of whole system engineering barriers were identified:

- Sufficient land area to deploy the rectennas.
- System security and debris damage withstand.
- There is a potential risk of material shortages for the manufacture of the solar photovoltaic panels.



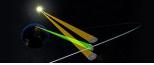
Cost Model

- Probabilistic cost model used to explore LCOE
- Input Data from referenced sources
- Sensitivity analysis for key cost drivers
- Output used to inform Economic Analysis


Scenario	Levelised Cost of Electricity (£/MWh)			
	p10	p50	p90	
Baseline (20%)	35.2	49.7	79.4	
Low Hurdle Rate (10%)	18.9	26.2	41.2	
Reduced Hurdle Rate (15%)	26.7	37.4	59.4	
High Hurdle Rate (25%)	43.6	63.2	100.9	
High Spacelift Cost (£2,410/kg)	83.7	91.0	99.0	
Low Spacelift Cost (£358/kg)	29.9	33.4	37.3	
FOAK (first of a kind)	51.3	66.3	96.0	
15 year life (20% hurdle rate)	37.3	50.9	81.0	

LCOE comparison with other generation technologies

Department for Business, Energy & Industrial Strategy



Phase 1

Department for Business, Energy & Industrial Strategy

Phase 3

Phase 2

Totals

Phase 4

Costed Development Plan

		TRL 5	TRL 6	TRL 7	TRL 8	
2022 - 26 Phase 1		5 years	5 years	4 years	4 years	
PHASE 1 - TRL 5 • WPT performance parameters established	p10	£125M	£530M	£2,410M	£7,925M	
Ground based • Rectenna design established satellite • SPS architecture confirmed	p50	£135M	£575M	£2,675M	£9,965M	
demonstrator • HCPV to RF conversion efficiency confirmed & balloon trials	p90	£145M	£620M	£2,930M	£12,610M	
	NPV (p50)	£120M	£435M	£1,740M	£5,655M	£7,539M
Phase 2 - TRL 6 40MW SPS demonstrator in low earth orbit Phase 2 Phase 2 Meaningful power transmitted from orbit to earth Viability of SPS established SPS module sizes and configurations established Atmospheric effects on WPT investigated Assembly robots designed	NPV (p50) Including optimism Bias	£350M	£1,180M	£3,950M	£10,800M	£16,280M
 2032 - 35 PHASE 3 - TRL7 500 MW SPS demonstrator in operational orbit 2036 - 39 PHASE 4 - TRL8 2GW SPS Production prototype in operational orbit 2036 - 209 PHASE 4 - TRL8 2GW SPS 2036 - 309 PHASE 4 - TRL8 2GW SPS SPS available for commercial power at end of industrialisation of SPS manufacture SPS available for grid connection 	of tests Derational system ure complete ders in place					

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

Phase 2 Cost and economic benefits to the UK - Conclusions

The study reviewed:

- The LCOE of SBSP and comparisons with other technologies
- The cost of a development programme
- The economic footprint of developing and operating a UK based SBSP system
- The spill-over benefits from the investment
- The level of public and private finding required
- A cost-benefit analysis
- Labour market assessment
- Contribution to UK strategic objectives
- Significant development and implementation risks

Phase 2 Cost and economic benefits to the UK - Conclusions

- Space Based Solar Power is technically feasible, and could be developed by 2040.
- It offers a new source of economically competitive baseload electricity.
- It requires a £16.3 billion development programme that could be achieved within 18 years.
- Public funding would be required for the majority of the development, given the substantial risk, cost and timescales.
- There are broader economic benefits for the UK to pursue the development of Space Based Solar Power, with a favourable GDP multiplier and benefit:cost ratio.

Phase 2 Cost and economic benefits to the UK - Conclusions

- The development could lead to substantial spill-over benefits.
- Development of Space Based Solar Power aligns well with a range of UK Government priorities.
- There are opportunities for international collaboration with our natural partners, and the UK is well placed to take a leadership role.

Space Based Solar Power

Technical Q&A Sessions

Space Based Solar Power Innovation Programme

Department for Business, Energy & Industrial Strategy

OFFICIAL

Technical Focus Discussions

Lot 1: Wireless Power Transmission

Development of high power wireless electromagnetic power transmission system with high efficiency and directionality over a long range beyond the state-of-the-art

EXPLORE

exploration of research gaps, challenges and promising areas

Why the R&D is novel or compelling (address the hardest / biggest challenges first)What the R&D proposal would requireWho the R&D proposal would benefit

Technical Focus Discussions

Lot 2: High Concentration Solar Photovoltaics

Development of innovative solar cells including new system design and novel materials research to increase its efficiency and reduce

exploration of research gaps, challenges and promising areas

Why the R&D is novel or compelling (address the hardest / biggest challenges first)What the R&D proposal would requireWho the R&D proposal would benefit

Technical Focus Discussions

Lot 3: Systems Engineering

Systems studies, management, design, and integration of wireless power transmission and high concentration solar PV

exploration of research gaps, challenges and promising areas

Why the R&D is novel or compelling (address the hardest / biggest challenges first)What the R&D proposal would requireWho the R&D proposal would benefit